sva::details Namespace Reference

Functions

template<typename T >
constexpr T sqrtNewtonRaphson (T x, T curr, T prev)
 
template<typename T >
constexpr T sqrt (T x)
 
template<typename T >
constexpr bool eq (T x, T y)
 
template<typename T >
constexpr T cbrtNewtonRaphson (T x, T curr, T prev)
 
template<typename T >
constexpr T cbrtSub (T x)
 
template<typename T >
constexpr T cbrt (T x)
 
template<typename T >
SO3JacF2 (const T &x)
 
template<typename T >
dSO3JacF2 (const T &x)
 

Function Documentation

◆ cbrt()

template<typename T >
constexpr T sva::details::cbrt ( x)
constexpr

Constexpr version of the cubic root Return value:

  • For a finite of "x", returns an approximation for the cubic root of "x"
  • Otherwise, returns NaN
    Note
    Should not be used for value x such that x+1==x or x+1==1 in floating point arithmetic.

◆ cbrtNewtonRaphson()

template<typename T >
constexpr T sva::details::cbrtNewtonRaphson ( x,
curr,
prev 
)
constexpr

◆ cbrtSub()

template<typename T >
constexpr T sva::details::cbrtSub ( x)
constexpr

◆ dSO3JacF2()

template<typename T >
T sva::details::dSO3JacF2 ( const T &  x)
inline

Compute the value $ \frac{x + \sin(x)}{2x^2(1-\cos(x)} - \frac{2}{x^3}$ which is the derivative of $ \frac{1}{x^2} - \frac{1+\cos(x)}{2 x \sin(x)} $.

◆ eq()

template<typename T >
constexpr bool sva::details::eq ( x,
y 
)
constexpr

◆ SO3JacF2()

template<typename T >
T sva::details::SO3JacF2 ( const T &  x)
inline

Compute the value $ \frac{1}{x^2} - \frac{1+\cos(x)}{2 x \sin(x)} $.

◆ sqrt()

template<typename T >
constexpr T sva::details::sqrt ( x)
constexpr

Constexpr version of the square root Return value:

Note
Should not be used for value x such that x+1==x or x+1==1 in floating point arithmetic.

◆ sqrtNewtonRaphson()

template<typename T >
constexpr T sva::details::sqrtNewtonRaphson ( x,
curr,
prev 
)
constexpr