matrixabstractlayermatrix3x3jrlmath.hh File Reference
#include "jrl/mathtools/matrix3x3.hh"

Defines

#define MAL_S3x3_MATRIX_TYPE(type)   jrlMathTools::Matrix3x3<type>
#define MAL_S3x3_MATRIX(name, type)   jrlMathTools::Matrix3x3<type> name
#define MAL_S3x3_MATRIX_CLEAR(name)   name.setZero()
#define MAL_S3x3_MATRIX_SET_IDENTITY(name)   name.setIdentity()
#define MAL_S3x3_INVERSE(name, inv_matrix, type)   name.Inversion(inv_matrix)
#define MAL_S3x3_RET_TRANSPOSE(matrix)   matrix.Transpose()
#define MAL_S3x3_TRANSPOSE_A_in_At(A, At)   A.Transpose(At)
#define MAL_S3x3_RET_A_by_B(A, B)   A*B
#define MAL_S3x3_C_eq_A_by_B(C, A, B)   A.CeqthismulB(B,C);
#define MAL_S3x3_MATRIX_ACCESS_I(name, i)   name[i]
#define MAL_S3x3_MATRIX_ACCESS_I_J(name, i, j)   name(i,j)

Typedefs

typedef
jrlMathTools::Matrix3x3
< double > 
matrix3d

Define Documentation

#define MAL_S3x3_C_eq_A_by_B (   C,
  A,
 
)    A.CeqthismulB(B,C);
#define MAL_S3x3_INVERSE (   name,
  inv_matrix,
  type 
)    name.Inversion(inv_matrix)
#define MAL_S3x3_MATRIX (   name,
  type 
)    jrlMathTools::Matrix3x3<type> name
#define MAL_S3x3_MATRIX_ACCESS_I (   name,
 
)    name[i]
#define MAL_S3x3_MATRIX_ACCESS_I_J (   name,
  i,
 
)    name(i,j)
#define MAL_S3x3_MATRIX_CLEAR (   name)    name.setZero()
#define MAL_S3x3_MATRIX_SET_IDENTITY (   name)    name.setIdentity()
#define MAL_S3x3_MATRIX_TYPE (   type)    jrlMathTools::Matrix3x3<type>
#define MAL_S3x3_RET_A_by_B (   A,
 
)    A*B
#define MAL_S3x3_RET_TRANSPOSE (   matrix)    matrix.Transpose()
#define MAL_S3x3_TRANSPOSE_A_in_At (   A,
  At 
)    A.Transpose(At)

Typedef Documentation

typedef jrlMathTools::Matrix3x3<double> matrix3d

This is a very fast and simple implementation of a 3D matrix class of double.

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines