imu-multiplicative-attitude-reconstruction.hpp File Reference
#include <state-observation/api.h>
#include <state-observation/dynamical-system/dynamical-system-simulator.hpp>
#include <state-observation/dynamical-system/imu-mltpctive-dynamical-system.hpp>
#include <state-observation/observer/extended-kalman-filter.hpp>
#include <state-observation/tools/miscellaneous-algorithms.hpp>
#include <state-observation/examples/imu-multiplicative-attitude-reconstruction.hxx>
Include dependency graph for imu-multiplicative-attitude-reconstruction.hpp:

Go to the source code of this file.

Namespaces

 stateObservation
 
 stateObservation::examples
 

Functions

IndexedVectorArray stateObservation::examples::imuMultiplicativeAttitudeReconstruction (const IndexedVectorArray &y, const IndexedVectorArray &u, const Vector &xh0, const Matrix &p, const Matrix &q, const Matrix &r, double dt)
 Provides the estimation of the state (mostly attitude) of an IMU, given the measurements of the IMU and the input (which provides the acceleration/jerk). This method uses multiplicative extended Kalman filtering, we need to provide it with an initial guess, a covariance matrix of this initial guess and covariance matrices of the state perturbations and measurement noises. More...
 
IndexedVectorArray stateObservation::examples::imuMultiplicativeAttitudeReconstruction (const IndexedVectorArray &y, const Vector &xh0, const Matrix &p, const Matrix &q, const Matrix &r, double dt)
 Provides the estimation of the state (mostly attitude) of an IMU, given the measurements of the IMU without knowing the input. The input is assumed to be zero over the observation. This method uses multiplicative extended Kalman filtering, we need to provide it with an initial guess, a covariance matrix of this initial guess and covariance matrices of the state perturbations and measurement noises. More...